Tổng hợp đề thi thử môn toán
ĐỀ THI THỬ KÌ THI THPT QUỐC GIA LẦN I
Năm học 2015 – 2016
Môn thi: Toán
Thời gian làm bài: 180 phút (Không kể thời gian phát đề)
Sở GD&ĐT Nghệ An
Trường THPT Phan Thúc Trực
Câu 1: (2,0 đ) Cho hàm số y x3 3x 2 (1)
a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số (1).
b) Viết phương trình tiếp tuyến của đồ thi (C) tại các giao điểm của (C) với đường thẳng d: y x 2
biết tọa độ tiếp điểm có hoành độ dương.
Câu 2: (0,5đ) Giải phương trình: log 3 ( x 2 3 x) log 1 (2 x 2) 0 ; ( x )
3
Câu 3: (0,5đ) Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số f ( x ) 2 x 4 4 x 2 10 trên đoạn 0; 2
1
Câu 4: (1,0đ) Tính tích phân: I (1 e x ) xdx
0
Câu 5: (1,0đ) Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(2;1;-3), B(4;3;-2), C(6;-4;-1). Chứng
minh rằng A, B,C là ba đỉnh của một tam giác vuông và viết phương trình mặt cầu tâm A đi qua trọng tâm G
của tam giác ABC.
Câu 6: (1,0đ)
3
a) Cho góc thỏa mãn:
và tan 2 . Tính giá trị của biểu thức A sin 2 cos( ) .
2
2
b) Trong cụm thi để xét công nhận tốt nghiệp THPT thí sinh phải thi 4 môn trong đó có 3 môn bắt buộc là
Toán, Văn, Ngoại ngữ và một môn do thí sinh tự chọn trong số các môn: Vật lí, Hóa học, Sinh học, Lịch sử và
Địa lí. Trường A có 30 học sinh đăng kí dự thi, trong đó có 10 học sinh chọn môn Lịch sử. Lấy ngẫu nhiên 5
học sinh bất kỳ của trường A, tính xác suất để trong 5 học sinh đó có nhiều nhất 2 học sinh chọn môn Lịch sử.
Câu 7: (1,0đ) Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh 3a, hình chiếu của S lên mặt phẳng
(ABC) là điểm H thuộc cạnh AB sao cho AB = 3AH. Góc tạo bởi SA và mặt phẳng (ABC) bằng 600 .
Tính theo a thể tích khối chóp S.ABC và khoảng cách giữa hai đường thẳng SA và BC.
Câu 8: (1,0đ)
1
Trong mặt phẳng tọa độ Oxy, cho hình thang ABCD với AB//CD có diện tích bằng 14, H ( ; 0) là
2
1 1
trung điểm của cạnh BC và I ( ; ) là trung điểm của AH. Viết phương trình đường thẳng AB biết đỉnh D có
4 2
hoành độ dương và D thuộc đường thẳng d: 5 x y 1 0 .
( xy 3) y 2 x x5 ( y 3 x) y 2
Câu 9: (1,0đ) Giải hệ phương trình:
( x, y )
9 x 2 16 2 2 y 8 4 2 x
Câu 10: (1,0đ) Cho x, y là hai số thực dương thỏa mãn 2 x 3 y 7 .Tìm giá trị nhỏ nhất của biểu thức
P 2 xy y 5( x2 y 2 ) 24 3 8( x y) ( x2 y 2 3)
..................Hết………….
Thí sinh không được sử dụng tài liệu. Cán bộ coi thi không giải thích gì thêm
Họ và tên thí sinh:……………………; Số báo danh:…………………….
Cảm ơn thầy Nguyễn Thành Hiển( https://www.facebook.com/HIEN.0905112810) đã chia sẻ
đến www.laisac.page.tl
KỲ THI THỬ THPT QUỐC GIA LẦN I NĂM HỌC 2015-2016
ĐÁP ÁN - THANG ĐIỂM
Môn thi: Toán (Gồm 4trang)
Câu
Nội dung
1.(2,0đ) a.
Điểm
1,0đ
*TXĐ: D=R
*Sự biến thiên:
0,25
2
-Chiều biến thiên: y ' 3 x 3, y ' 0 x 1
Hàm số nghịch biến trên mỗi khoảng (; 1) và (1; ) , đồng biến trên khoảng (-1;1)
- Cực trị: HS đạt cực tiểu tại x = -1; yct 4 và đạt cực đại tại x = 1; ycd 0
- Giới hạn: lim y ;
0,25
lim y
x
x
-Bảng biến thiên:
x
-
y’
-1
-
0
+
1
+
+
0
0,25
0
y
-
-4
*Đồ Thị: Cắt trục Ox tại 2 điểm (1;0); (-2;0); cắt trục Oy tại điểm (0;-2). Đi qua điểm (2; -4)
0,25
b.
1,0đ
Hoành độ giao điểm của (C) và d là nghiệm của phương trình: x 3 3x 2 x 2
0,25
x 0
x 2(t / m)
x 2
0,25
Với x = 2 thì y(2) = -4; y’(2) = -9
0,25
PTTT là: y = -9x + 14
0,25
2.(0,5đ) Đk: x>0 (*)
3.(0,5đ)
Với Đk(*) ta có: (1) log 3 ( x 2 3x ) log 3 (2 x 2)
0,25
x 1(t / m)
. Vậy nghiệm của PT là x = 1
x2 x 2 0
x
2(
loai
)
0,25
f ( x ) xác định và liên tục trên đoạn 0; 2 , ta có: f '( x) 8 x 3 8 x
0,25
x 0
Với x 0; 2 thì: f '( x) 0
. Ta có: f(0) = 10; f(1) = 12; f(2) = -6
x 1
Vậy: Max f ( x) f (1) 12; min f ( x) f (2) 6
0;2
0;2
0,25
Câu
4.
(1,0đ)
Nội dung
u x
du dx
Đặt:
x
x
dv (1 e )dx v x e
Điểm
0,25
1
Khi đó: I x ( x e x ) 10 ( x e x )dx
0
5.
(1,0đ)
6.
(1,0đ)
0,25
x2
3
I 1 e ( e x ) 10
2
2
2 2
AB; AC không cùng phương A; B; C lập
Ta có: AB (2; 2;1); AC (4; 5; 2)
4 5
thành tam giác. Mặt khác: AB. AC 2.4 2.(5) 1.2 0 AB AC suy ra ba điểm A; B;
0,25
C là ba đỉnh của tam giác vuông.
0,25
Vì G là trọng tâm của tam giác ABC nên G(4;0; -2). Ta có: AG 6
0,25
Mặt cầu cần tìm có tâm A và bán kính AG 6 nên có pt: ( x 2) 2 ( y 1)2 ( z 3)2 6
0,25
a.
0,5đ
Vì
0,25
0,25
sin 0
3
nên
. Do đó:
2
cos 0
1
1
2
cos
sin cos . tan
2
1 tan
5
5
Ta có: A 2sin .cos sin
42 5
5
0,25
0,25
b.
0,5đ
Số phần tử của không gian mẫu là: n() C305 142506
0,25
Gọi A là biến cố : “5 học sinh được chọn có nhiều nhất 2 học sinh chọn môn lịch sử”
5
3
C204 C101 C20
C102 115254
Số phần tử của biến cố A là: n( A) C20
Vậy xác suất cần tìm là: P( A)
7.
(1,0đ)
Diện tích đáy là: dt( ABC ) =
115254
0,81 .
142506
9a 2 3
1
AB.AC.Sin600 =
. Vì SH ( ABC ) nên góc tạo bởi
2
4
0,25
0,25
SA và (ABC) là: SAH 600 SH AH .tan 600 a 3 . Thể tích khối chóp S.ABC là:
1
9a 3
V= SH .dt (ABC )
3
4
0,25
Kẻ AD BC thì d(SA,BC)=d(BC,(SAD))=d(B,(SAD))=3d(H,(SAD)) Vì AB=3AH
Kẻ HI AD và HK SI ,do AD SH nên AD ( SHI ) AD HK Suy ra:
0,25
Câu
Điểm
Nội dung
d(H,(SAD)) = HK. Ta có: HI AH.sin600
a 3
. Trong tam giác SHI , ta có:
2
1
1
1
5
a 15
3a 15
. Vậy d ( SA, BC )
2 HK
2
2
2
HK
HI
HS
3a
5
5
S
0,25
K
A
I
D
H
C
B
8.
(1,0đ)
Vì I là trung điểm của AH nên A(1;1); Ta có: AH
13
.
2
0,25
Phương trình AH là: 2 x 3 y 1 0 .Gọi M AH CD thì H là trung điểm của AM
0,25
Suy ra: M(-2; -1). Giả sử D(a; 5a+1) (a>0). Ta có:
ABH MCH S ABCD SADM AH .d ( D, AH ) 14 d ( D, AH )
28
13
0,25
Hay 13a 2 28 a 2(vì a 0) D (2;11)
Vì AB đi qua A(1;1) và có 1VTCP là
1
MD (1;3) AB có 1VTPT là n(3; 1) nên AB có
4
0,25
Pt là: 3 x y 2 0
A
B
I
H
D
C
M
9.
(1,0đ)
0 x 2
Đk:
y 2
(*) .Với đk(*) ta có
x 1
(1) ( x 1) ( y 3) y 2 ( x 1) x 0
( y 3) y 2 ( x 1) x
Câu
0,25
(3)
Nội dung
Với x = 1 thay vào (2) ta được: 2 2 y 8 1 y
Ta có: (3)
Điểm
31
(loai )
8
3
y 2 y 2 ( x )3 x (4). Xét hàm số
0,25
f (t ) t 3 t f '(t ) 3t 2 1 0; t Hàm số f(t) là hs đồng biến, do đó:
(4) f ( y 2) f ( x )
y 2 x y x 2 thay vào pt(2) ta được:
4 2 x 2 2 x 4 9 x 2 16
32 8 x 16 2(4 x 2 ) 9 x 2 8(4 x 2 ) 16 2(4 x 2 ) ( x 2 8 x) 0
Đặt: t 2(4 x 2 )
Hay
0,25
x
t 2
2
2
(t 0) ; PT trở thành: 4t 16t ( x 8 x ) 0
t x 4 0(loai)
2
0 x 2
x
4 2
4 2 6
2(4 x ) 2 32 x
y
2
3
3
x 9
2
0,25
4 2 4 2 6
;
Vậy hệ pt có nghiệm (x; y) là:
3
3
10.
2
(1,0đ)
2x 2 3 y 3
Ta có 6( x 1)( y 1) (2 x 2)(3 y 3)
36 x y xy 5 .
2
0,25
2
Ta có 5( x 2 y 2 ) 2 x y 5( x 2 y 2 ) 2 x y và
( x y 3) 2 x 2 y 2 9 2 xy 6 x 6 y 0
2( x y xy 3) 8( x y ) ( x 2 y 2 3)
0,25
Suy ra P 2( xy x y) 243 2( x y xy 3)
Đặt t x y xy, t 0;5 , P f (t ) 2t 24 3 2t 6
Ta có f / (t ) 2
24.2
3 3 (2t 6) 2
3
2
(2t 6)2 8
3
(2t 6)2
0, t 0;5
0,25
hàm số f(t) nghịch biến trên nữa khoảng 0;5 .
Suy ra min f (t ) f (5) 10 48 3 2
x 2
Vậy min P 10 48 2, khi
y 1
3
0,25
………….Hết…………
Lưu ý: - Điểm bài thi không làm tròn
- HS giải cách khác đúng và đủ ý thì vẫn cho điểm tối đa của phần tương ứng
- Với bài HH không gian nếu thí sinh không vẽ hình hoặc vẽ hình sai thì không cho điểm tương
ứng với phần đó.
Cảm ơn thầy Nguyễn Thành Hiển( https://www.facebook.com/HIEN.0905112810) đã chia sẻ
đến www.laisac.page.tl
TRƯỜNG THPT CHUYÊN VĨNH PHÚC
ĐỀ CHÍNH THỨC
ĐỀ THI THPT QUỐC GIA NĂM HỌC 20152016LẦN I
Môn: TOÁN
Thời gian làm bài: 180 phút, không kể thời gian phát đề.
Câu 1 (1,0 điểm). Khảo sát sự biến thiên và vẽ đồ thị của hàm số y = x 3 - 3 x 2 + 2
Câu 2 (1,0 điểm).Tìm cực trị của hàm số : y = x - sin 2 x + 2 .
Câu 3 (1,0 điểm).
3sin a - 2 cos a
a) Cho tan a = 3 . Tính giá trị biểu thức M =
5sin 3 a + 4 cos 3 a
x - 4 x - 3
x ®3
x 2 - 9
Câu 4 (1,0 điểm). Giải phương trình : 3sin 2 x - 4sin x cos x + 5cos 2 x = 2
b) Tính giới hạn : L = lim
Câu 5 (1,0 điểm).
5
2 ö
æ
a) Tìm hệ số của x trong khai triển của biểu thức : ç 3x 3 - 2 ÷ .
x ø
è
b) Một hộp chứa 20 quả cầu giống nhau gồm 12 quả đỏ và 8 quả xanh. Lấy ngẫu nhiên (đồng
thời) 3 quả. Tính xác suất để có ít nhất một quả cầu màu xanh.
10
Câu 6 (1,0 điểm). Trong mặt phẳng với hệ tọa độ ( Oxy ) , cho hình bình hành ABCD có hai đỉnh
A ( -2; - 1 ) , D ( 5;0 ) và có tâm I ( 2;1 ) . Hãy xác định tọa độ hai đỉnh B, C và góc nhọn hợp bởi hai
đường chéo của hình bình hành đã cho.
Câu 7 (1,0 điểm).
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A , mặt bên SAB là tam giác đều và nằm
trong mặt phẳng vuông góc với mặt phẳng ( ABC ) , gọi M là điểm thuộc cạnh SC sao cho
MC = 2 MS . Biết AB = 3, BC = 3 3 , tính thể tích của khối chóp S.ABC và khoảng cách giữa hai
đường thẳng AC và BM .
Câu 8 (1,0 điểm). Trong mặt phẳng với hệ tọa độ ( Oxy ) , cho tam giác ABC ngoại tiếp đường tròn
tâm J ( 2;1 ) . Biết đường cao xuất phát từ đỉnh A của tam giác ABC có phương trình : 2 x + y - 10 = 0
và D ( 2; - 4 ) là giao điểm thứ hai của AJ với đường tròn ngoại tiếp tam giác ABC . Tìm tọa độ các
đỉnh tam giác ABC biết B có hoành độ âm và B thuộc đường thẳng có phương trình x + y + 7 = 0 .
ìï x 3 - y 3 + 3 x - 12 y + 7 = 3 x 2 - 6 y 2
Câu 9 (1,0 điểm). Giải hệ phương trình : í
3
2
ïî x + 2 + 4 - y = x + y - 4 x - 2 y
Câu 10 (1,0 điểm).Cho hai phương trình : x 3 + 2 x 2 + 3 x + 4 = 0 và x 3 - 8 x 2 + 23 x - 26 = 0 .
Chứng minh rằng mỗi phương trình trên có đúng một nghiệm, tính tổng hai nghiệm đó.
Hết
Thí sinh không được sử dụng tài liệu. Cán bộ coi thi không giải thích gì thêm.
Họ và tên thí sinh:……….………..…….…….….….; Số báo danh:………………
Cảm ơn thầy Nguyễn Thành Hiển (https://www.facebook.com/HIEN.0905112810) đã chia sẻ đến
www.laisac.page.tl
TRƯỜNG THPT CHUYÊN VĨNH PHÚC
HƯỚNG DẪN CHẤM ĐỀ THI THPT QUỐC GIA LẦN I
NĂM HỌC 20152016
Môn: TOÁN ( Gồm 6 trang)
Câu
Đáp án
Điểm
Câu 1.Khảo sát sự biến thiên và vẽ đồ thị của hàm số y = x 3 - 3 x 2 + 2
1,0
Tập xác định: D = ¡ .
é x = 0
Ta có y' = 3 x 2 - 6 x. ; y' = 0 Û ê
ë x = 2
0,25
Xét dấu đạo hàm; Hàm số đồng biến trên các khoảng (-¥ ; 0) và (2; +¥ ) ; nghịch
biến trên khoảng (0; 2) .
Cực trị: Hàm số đạt cực đại tại x = 0, yCĐ= 2; đạt cực tiểu tại x = 2, yCT =2.
0,25
Giới hạn: lim y = +¥, lim y = -¥
x ®+¥
x ®-¥
Bảng biến thiên:
-¥
x
y'
y
0 2
+ 0
0 +
2
+¥
+¥
0,25
2
-¥
1 (1,0 đ) Đồ thị:
y
f(x)=(x^3)3*(x )^2+2
5
x
8
6
4
2
2
4
6
0,25
8
5
2 (1,0 đ)
Câu 2 .Tìm cực trị của hàm số : y = x - sin 2 x + 2 .
1,0
Tập xác định D = ¡
f ¢ ( x ) = 1 - 2 cos 2 x , f ¢¢ ( x ) = 4 sin 2 x
0,25
f ¢ ( x ) = 0 Û 1 - 2 cos 2 x = 0 Û cos 2 x =
1
p
Û x = ± + k p , k Î ¢
2
6
0,25
p
æ p
ö
æ pö
f ¢¢ ç - + k p ÷ = 4 sin ç - ÷ = -2 3 < 0 Þ hàm số đạt cực đại tại xi = - + k p
6
è 6
ø
è 3 ø
3.(1,0đ)
p
3
æ p
ö
Với yC D = f ç - + k p ÷ = - +
+ 2 + k p , k Î ¢
6 2
è 6
ø
p
æp
ö
æpö
f ¢¢ ç + k p ÷ = 4 sin ç ÷ = 2 3 > 0 Þ hàm số đạt cực tiểu tại xi = + k p
6
3
6
è
ø
è ø
3
æp
ö p
+ 2 + k p , k Î ¢
Với yC T = f ç + k p ÷ = è6
ø 6 2
3sin a - 2 cos a
Cho tan a = 3 . Tính giá trị biểu thức M =
5sin 3 a + 4cos 3 a
2
2
2
3sin a ( sin a + cos a ) - 2 cos a ( sin a + cos 2 a )
M=
5sin 3 a + 4 cos 3 a
3sin 3 a - 2sin 2 a cos a + 3sin a cos 2 a - 2 cos 3 a
=
(chia tử và mẫu cho cos 3 a )
5sin 3 a + 4cos 3 a
3 tan 3 a - 2 tan 2 a + 3tan a - 2
=
5 tan 3 a + 4
3.33 - 2.32 + 3.3 - 2 70
Thay tan a = 3 vào ta được M =
=
5.33 + 4
139
Lưu ý: HS cũng có thể từ tan a = 3 suy ra 2kp < a <
1
cos a =
10
3
; sin a =
10
x ®3
(x(x
x ®3
)(
(
- 9) x + 4 x - 3
x - 1
L = lim
x ®3
( x + 3) ( x +
0,5
0,25
0,25
+ 2 kp và
x - 4 x - 3
x 2 - 9
0,5
) = lim
4 x - 3 x + 4 x - 3
2
2
0,25
rồi thay vào biểu thức M.
b) Tính giới hạn : L = lim
L = lim
p
0,25
4x - 3
)
)
=
x ®3
(x
x 2 - 4 x + 3
2
(
3 -1
( 3 + 3) ( 3 +
0,25
)
- 9 ) x + 4 x - 3
)
4.3 - 1
=
1
18
0,25
Câu 4.Giải phương trình : 3sin 2 x - 4sin x cos x + 5cos 2 x = 2
1,0
2
2
2
2
4 .(1,0 đ) Phương trình Û 3sin x - 4sin x cos x + 5cos x = 2 ( sin x + cos x )
Û sin 2 x - 4sin x cos x + 3cos 2 x = 0
Û ( sin x - cos x )( sin x - 3cos x ) = 0 Û sin x - cos x = 0 Ú sin x - 3cos x = 0
p
+ k p Ú x = arctan 3 + k p , k Î Z
4
p
Vậy phương trình có hai họ nghiệm: x = + k p , x = arctan 3 + k p , k Î Z
4
0,25
0,25
0,25
Û tan x = 1 Ú tan x = 3 Û x =
0,25
5
2 ö
æ
a) Tìm hệ số của số hạng chứa x 10 trong khai triển của biểu thức : ç 3x 3 - 2 ÷ .
x ø
è
5
5 - k
k
5
5
k 5 - k
æ 3 2ö
æ 2 ö
k
3
k
k 15 -5 k
3
x
=
C
3
x
.
=
(
)
å
5
ç
ç 2 ÷ å C5 ( -1) 3 .2 x
2 ÷
x ø k =0
è
è x ø k =0
Hệ số của của số hạng chứa x 10 là C5 k ( - 1) k 35 - k 2 k , với 15 - 5k = 10 Û k = 1
1
1,0
Vậy hệ số của x 10 là : C5 1 ( -1) 34 21 = - 810
0,25
0,25
5 (1,0 đ) b) Một hộp chứa 20 quả cầu giống nhau gồm 12 quả đỏ và 8 quả xanh. Lấy ngẫu
nhiên 3 quả. Tính xác suất để trong 3 quả cầu chọn ra có ít nhất một quả cầu màu
xanh.
3
Số phần tử của không gian mẫu là n ( W ) = C20
Gọi A là biến cố “Chọn được ba quả cầu trong đó có ít nhất một quả cầu màu xanh”
C 3
3
Thì A là biến cố “Chọn được ba quả cầu màu đỏ” Þ n ( A ) = C12
Þ P ( A ) = 12
3
C20
C 3 46
Vậy xác suất của biến cố A là P ( A ) = 1 - P ( A ) = 1 - 12
=
3
C20
57
0,25
0,25
Câu 6 . Trong mặt phẳng với hệ tọa độ ( Oxy ) , cho hình bình hành ABCD có hai
đỉnh A ( -2; - 1 ) , D ( 5;0 ) và có tâm I ( 2;1 ) . Hãy xác định tọa độ hai đỉnh B, C và
góc nhọn hợp bởi hai đường chéo của hình bình hành đã cho.
ì x = 2 xI - x D = 4 - 5 = -1
Do I là trung điểm BD . Suy ra í B
Þ B ( -1; 2 )
î yB = 2 yI - yD = 2 - 0 = 2
6 .(1,0 đ) Do I là trung điểm AC . Suy ra ì xC = 2 xI - x A = 4 + 2 = 6 Þ C 6;3
( )
í
î yC = 2 y I - y A = 2 + 1 = 3
uuur
uuur
Góc nhọn a = ( AC , BD ) . Ta có AC = ( 8; 4 ) , BD = ( 6; -2 )
0,25
0,25
0,25
uuur uuur
uuur uuur
AC × BD
48 - 8
2
cos a = cos AC , BD = uuur uuur =
=
Þ a = 45 o
2
4 5.2 10
AC BD
(
1,0
)
0,25
Câu 7 . Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A , mặt bên SAB
là tam giác đều và nằm trong mặt phẳng vuông góc với mặt phẳng ( ABC ) , gọi M
là điểm thuộc cạnh SC sao cho MC = 2 MS . Biết AB = 3, BC = 3 3 , tính thể tích
của khối chóp S.ABC và khoảng cách giữa hai đường thẳng AC và BM .
1,0
S
Gọi H là trung điểm AB Þ SH ^ AB ( do
D SAB đều).
Do ( SAB ) ^ ( ABC ) Þ SH ^ ( ABC )
N
M
K
Do D ABC đều cạnh bằng 3
nên SH =
0,25
3 3
, AC = BC 2 - AB 2 = 3 2
2
A
C
H
B
3
1
1
3 6 9 6
(đvtt)
Þ VS . ABC = × SH × S ABC = × SH × AB × AC =
=
3
6
12
4
7. (1,0 đ) Từ M kẻ đường thẳng song song với AC cắt SA tại N Þ AC || MN Þ AC || ( BMN )
AC ^ AB, AC ^ SH Þ AC ^ ( SAB ) , AC || MN Þ MN ^ ( SAB ) Þ MN ^ ( SAB )
Þ ( BMN ) ^ ( SAB ) theo giao tuyến BN .
0,25
0,25
Ta có AC || ( BMN ) Þ d ( AC , BM ) = d ( AC , ( BMN ) ) = d ( A, ( BMN ) ) = AK với K
là hình chiếu của A trên BN
NA MC 2
2
2 32 3 3 3
2
=
= Þ S ABN = S SAB = ×
=
(đvdt) và AN = SA = 2
SA SC 3
3
3 4
2
3
0,25
BN =
3 3
2 ×
2S
2 = 3 21
AN 2 + AB 2 - 2AN . AB.cos 60 0 = 7 Þ AK = ABN =
BN
7
7
3 21
(đvđd)
7
Lưu ý: Việc tính thể tích, học sinh cũng có thể giải quyết theo hướng CA ^ (SAB )
và VS . ABC = VC . SAB
Vậy d ( AC , BM ) =
Câu 8. Trong mặt phẳng với hệ tọa độ ( Oxy ) , cho tam giác ABC ngoại tiếp đường
tròn tâm J ( 2;1 ) . Biết đường cao xuất phát từ đỉnh A của tam giác ABC có phương
trình : 2 x + y - 10 = 0 và D ( 2; - 4 ) là giao điểm thứ hai của AJ với đường tròn ngoại
tiếp tam giác ABC . Tìm tọa độ các đỉnh tam giác ABC biết B có hoành độ âm và
B thuộc đường thẳng có phương trình x + y + 7 = 0 .
AJ đi qua J ( 2;1 ) và D ( 2; - 4 ) nên có
phương trình AJ : x - 2 = 0
{ A} = AJ Ç AH , ( trong đó H là chân
đường cao xuất phát từ đỉnh A )
A
E
J
Tọa độ A là nghiệm của hệ
ìx - 2 = 0
ì x = 2
Ûí
Þ A ( 2; 6 )
í
î 2 x + y - 10 = 0
î y = 6
1,0
B
0,25
I
C
H
D
8 .(1,0 đ) Gọi E là giao điểm thứ hai của BJ với đường tròn ngoại tiếp tam giác ABC .
» = DC
» = EA
» Þ DB = DC và EC
»
Ta có DB
· = 1 (sđ EC
» + sđ DB
» )= DJB
» 1 (sđ EA
· Þ D DBJ cân tại D Þ
» + sđ DC )=
DBJ
2
2
DC = DB = DJ hay D là tâm đường tròn ngoại tiếp tam giác JBC
Suy ra B, C nằm trên đường tròn tâm D ( 2; - 4 ) bán kính JD = 0 2 + 52 = 5 có
2
2
phương trình ( x - 2 ) + ( y + 4 ) = 25 . Khi đó tọa độ B là nghiệm của hệ
2
2
é B ( -3; -4 )
ïì( x - 2 ) + ( y + 4 ) = 25 ì x = -3 ì x = 2
Ûí
Úí
Þê
í
î y = -4 î y = -9 ëê B ( 2; -9 )
ï x + y + 7 = 0
î
0,25
Do B có hoành độ âm nên ta được B ( -3; - 4 )
ìï qua B ( -3; -4 )
ìïqua B ( -3; -4 )
Þ BC : x - 2 y - 5 = 0
BC : í
Þ BC : í
r r
ïî^ AH
îïvtpt n = u AH = (1; -2 )
Khi đó tọa độ C là nghiệm của hệ
2
2
ïì( x - 2 ) + ( y + 4 ) = 25 ì x = -3 ì x = 5 éC ( -3; -4 ) º B
Ûí
Úí
Þê
Þ C ( 5; 0 )
í
î y = -4 î y = 0 ëêC ( 5;0 )
ï x - 2 y - 5 = 0
î
0,25
Vậy A ( 2;6 ) , B ( -3; - 4 ) , C ( 5;0 )
ìï x 3 - y 3 + 3 x - 12 y + 7 = 3 x 2 - 6 y 2
Câu 9. Giải hệ phương trình : í
3
2
ïî x + 2 + 4 - y = x + y - 4 x - 2 y
ìx + 2 ³ 0
ì x ³ -2
Điều kiện : í
Ûí
î4 - y ³ 0
î y £ 4
(1 )
( 2 )
1,0
0,25
3
3
Từ phương trình (1 ) ta có ( x - 1) = ( y - 2 ) Û x - 1 = y - 2 Û y = x + 1
9 .(1,0 đ) Thay ( 3 ) vào ( 2 ) ta được pt:
x+2 +
( 3 )
4 - ( x + 1) = x 3 + ( x + 1) - 4 x - 2 ( x + 1 )
2
Û x + 2 + 3 - x = x3 + x 2 - 4 x - 1 , Đ/K -2 £ x £ 3
Û
Û
Û
(
)
x + 2 + 3 - x - 3 = x3 + x 2 - 4 x - 4 Û
2 éë( x + 2 )( 3 - x ) - 4 ùû
(
x + 2 + 3- x + 3
)(
( x + 2 )( 3 - x ) + 2 )
2 ( - x 2 + x + 2 )
(
x + 2 + 3- x + 3
)(
( x + 2 )( 3 - x ) + 2 )
(
( x + 2 )( 3 - x ) - 2 )
(
x + 2 + 3 - x + 3
2
)
= ( x + 1) ( x 2 - 4 )
= ( x + 1) ( x 2 - 4 )
= ( x + 2 ) ( x 2 - x - 2 )
0,25
æ
ö
ç
÷
2
ç
÷ = 0
2
Û ( x - x - 2 ) ç x + 2 +
x+ 2 + 3- x +3
( x + 2 )( 3 - x ) + 2 ÷÷
ç
ç 144444444424444444443 ÷
è
> 0
ø
2
Û x - x - 2 = 0 Û x = 2 Ú x = -1
(
0,25
)(
·
( )
x = 2 ¾¾
® y = 3 Þ ( x; y ) = ( 2;3 ) ( thỏa mãn đ/k)
·
( )
x = -1 ¾¾
® y = 0 Þ ( x; y ) = ( - 1;0 ) ( thỏa mãn đ/k)
)
0,25
3
3
Vậy hệ phương trình có hai nghiệm ( x; y ) = ( 2;3) , ( x; y ) = ( - 1; 0 )
Câu10.Chohai phương trình: x 3 + 2 x 2 + 3 x + 4 = 0 và x 3 - 8 x 2 + 23 x - 26 = 0 .Chứng
minh rằng mỗi phương trình trên có đúng một nghiệm, tính tổng hai nghiệm đó
· Hàm số f ( x ) = x 3 + 2 x 2 + 3 x + 4 xác định và liên tục trên tập ¡
Đạo hàm f ¢ ( x ) = 3 x 2 + 2 x + 3 > 0, "x Î ¡ Þ f ( x ) đồng biến trên ¡
1,0
(*)
f ( -4 ) . f ( 0 ) = ( -40 ) .4 = -160 < 0 Þ $ a Î ( -4;0 ) : f ( a ) = 0 ( ** )
0,25
Từ (* ) và (** ) suy ra phương trình
10.(1,0đ)
x 3 + 2 x 2 + 3 x + 4 = 0 có một nhiệm duy nhất x = a
· Tương tự phương trình x 3 - 8 x 2 + 23 x - 26 = 0 có một nhiệm duy nhất x = b
0,25
Theo trên : a 3 + 2 a 2 + 3a + 4 = 0
(1 )
3
2
Và b3 - 8b 2 + 23b - 26 = 0 Û ( 2 - b ) + 2 ( 2 - b ) + 3 ( 2 - b ) + 4 = 0 ( 2 )
3
2
Từ (1 ) và ( 2 ) Þ a 3 + 2a 2 + 3a + 4 = ( 2 - b ) + 2 ( 2 - b ) + 3 ( 2 - b ) + 4 ( 3 )
Theo trên hàm số f ( x ) = x 3 + 2 x 2 + 3 x + 4 đồng biến và liên tục trên tập ¡
Đẳng thức ( 3) Û f ( a ) = f ( 2 - b ) Û a = 2 - b Û a + b = 2
0,25
0,25
Vậy tổng hai nghiệm của hai phương trình đó bằng 2 .
Lưu ý khi chấm bài:
Đáp án chỉ trình bày một cách giải bao gồm các ý bắt buộc phải có trong bài làm của học sinh. Khi chấm
nếu học sinh bỏ qua bước nào thì không cho điểm bước đó.
Nếu học sinh giải cách khác, giám khảo căn cứ các ý trong đáp án để cho điểm.
Trong bài làm, nếu ở một bước nào đó bị sai thì các phần sau có sử dụng kết quả sai đó không được điểm.
Học sinh được sử dụng kết quả phần trước để làm phần sau.
Trong lời giải câu 7 nếu học sinh không vẽ hình thì không cho điểm.
Điểm toàn bài tính đến 0,25 và không làm tròn.
Cảm ơn thầy Nguyễn Thành Hiển (https://www.facebook.com/HIEN.0905112810) đã chia sẻ đến
www.laisac.page.tl
TRƯỜNG THPT KHOÁI CHÂU
ĐỀ CHÍNH THỨC
ĐỀ THI KHẢO SÁT CHẤT LƯỢNG LẦN I
Năm học 2015 – 2016.
MÔN: TOÁN. LỚP 12
Thời gian làm bài: 150 phút, không kể thời gian giao đề
( Đề thi gồm 01 trang)
Câu 1( 2,0 điểm). Cho hàm số y x3 3 x2 (C).
a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số (C).
b) Tìm m để đường thẳng đi qua 2 điểm cực trị của đồ thị (C) tạo với đường thẳng
: x my 3 0 một góc biết cos
4
.
5
Câu 2(1,0 điểm ). Tìm các đường tiệm cận của đồ thị hàm số y
2x 3
.
x 2015
9
5
Câu 3( 1,0 điểm). Xác định hệ số của số hạng chứa x3 trong khai triển x5 2 .
x
Câu 4(1,0 điểm). Giải phương trình sin 2 x sin x cos x 2 cos2 x 0 .
Câu 5(1,0 điểm). Cho hình chóp S.ABCD, đáy ABCD là hình thoi cạnh a, SA
a
a 3
, SB
2
2
60 0 và mặt phẳng (SAB) vuông góc với đáy. Gọi H, K lần lượt là trung điểm của
, BAD
AB, BC. Tính thể tích tứ diện KSDC và tính cosin của góc giữa đường thẳng SH và DK.
Câu 6(2,0 điểm). Trong mặt phẳng với hệ tọa độ Oxy, cho hình chữ nhật ABCD có
DC BC 2 , tâm I( - 1 ; 2 ). Gọi M là trung điểm của cạnh CD, H( - 2; 1 ) là giao điểm của
hai đường thẳng AC và BM.
a) Viết phương trình đường thẳng IH.
b) Tìm tọa độ các điểm A và B.
Câu 7( 1,0 điểm). Giải phương trình
2 x 1 3 2 x 4 2 3 4 x 4 x2
2
1
4 x2 4 x 3 2 x 1
4
trên tập số thực.
x y z 0
Câu 8( 1,0 điểm). Cho ba số thực x, y, z thay đổi thỏa mãn 2
.Tìm giá trị lớn
2
2
x y z 2
nhất của biểu thức P x3 y3 z3 .
------------------- Hết ------------------Thí sinh không được sử dụng tài liệu. Cán bộ coi thi không giải thích gì thêm.
Họ và tên thí sinh: ………………………………………………; Số báo danh:………
Cảm ơn thầy Nguyễn Thành Hiển (https://www.facebook.com/HIEN.0905112810) đã chia sẻ đến
www.laisac.page.tl
TRƯỜNG THPT KHOÁI CHÂU
HƯỚNG DẪN CHẤM ĐỀ KSCL LẦN I
MÔN: TOÁN. LỚP 12
(Hướng dẫn gồm 04 trang)
Chú ý:
Học sinh làm cách khác mà đúng thì cho điểm tối đa phần đó.
Điểm toàn bài không làm tròn.
CÂU
ĐÁP ÁN
TXĐ: D
Sự biến thiên: y 3 x2 6 x 3 x x 2
ĐIỂM
0.25
x 0
y 0
x 2
Hàm số đồng biến trên các khoảng ; 0 và 2;
Hàm số nghịch biến trên khoảng 0;2 .
Hàm số đạt cực tiểu tại x = 2 yCT 4 , cực đại tại x = 0 yCÑ 0
0.25
Giới hạn lim y , lim y
x
Bảng biến thiên
x
x
-∞
y’
1a)
(1,0 đ)
0
0
0
+
+∞
2
0
-
+
+∞
0.25
y
-4
-∞
Đồ thị
6
y
f(x)=x^3-3*x^2
4
2
0.25
x
-4
-2
2
4
6
-2
-4
-6
Đường thẳng đi qua CĐ, CT là 1 : 2 x y 0 VTPT n1 2;1
Đường thẳng đã cho : x my 3 0 có VTPT n2 1; m
1b)
(1,0 đ)
Yêu cầu bài toán cos ; 1 cos n1; n 2
25 m2 4 m 4 5.16. m2 1
11m2 20 m 4 0
m2
5. m2 1
4
5
0.25
0.25
0.25
1