ÁP LỰC NGANG CỦA ĐẤT

  • pdf
  • 19 trang
TÀI LIỆU ÔN THI CAO HỌC

MÔN: CƠ HỌC ĐẤT

CHƯƠNG 5: ÁP LỰC NGANG CỦA ĐẤT
5.1 Khái niệm về tường chắn
Xây dựng kết cấu tường chắn để tăng cường ổn định của công trình chịu các áp
lực ngang của đất: tường các tầng hầm, mố cầu, tường chắn đất, đường hầm, bờ kè là
bản tường …
Mục đích sử dụng của tường chắn
- Để giữ cho khối đất sau lưng tường, có sự chên lệch độ cao được cân bằng, khỏi
bị trượt, tụt xuống.
- Chống sạt lở công trình mới xây dựng bên cạnh công trình cũ.
- Chống thành hố móng, hố đào sâu.
- Chống sạt lở bờ sông …
- Chống thấm nước từ thượng lưu xuống hạ lưu của công trình thủy công.
Tường chắn gồm các loại như sau:
- Tường chắn trọng lực: Chịu nén. Dùng vật liệu chịu nén như gạch, đá hộc, bê
tông đá hộc, bê tông cốt thép.
- Tường chắn bán trọng lực (thành mỏng, bản góc): Chịu nén và uốn. Bê tông cốt
thép
- Tường cọc bản (sheet pile wall), tường vây (diaphragm wall), tường cừ larssen:
Chịu uốn. Gỗ, thép, bê tông, bê tông cốt thép.
- Tường cọc đất trộn xi măng, tường cọc khoan nhồi
5.2 Các loại áp lực ngang của đất
Một phân tố đất cân bằng tĩnh trong đất tự nhiên bán không gian phải thỏa hệ
phương trình cân bằng sau:
∂σ x ∂τ yx ∂τ zx
+
+
+ Fx = 0
∂x
∂y
∂z
∂τ xy
∂x

+

∂σ y
∂y

+

∂τ zy
∂z

+ Fy = 0

∂τ xz ∂τ yz ∂σ z
+
+
+ Fz = γ
∂x
∂y
∂z

τzy - τyz = 0
τzx - τxz = 0
τxy - τyx = 0
Để có lời giải chính xác hệ phương trình trên đòi hỏi nhiều điều kiện ban đầu như
tính: liên tục, đất đồng nhất, đất có nhiều lớp, các đặc trưng ma sát, dính nội tại, tính
đẳng hướng, ... Một giả thiết được sử dụng rộng rải cho lời giải riêng của hệ phương
GV: ThS.NCS.LÊ HOÀNG VIỆT

145

TÀI LIỆU ÔN THI CAO HỌC

MÔN: CƠ HỌC ĐẤT

trình và kết quả được chấp nhận là các ứng suất pháp tăng tuyến tính theo chiều sâu,
để tính ứng suất do trọng lượng bản thân. Loại áp lực ngang này của đất được gọi là áp
lực ngang ở trạng thái tĩnh (earth pressure at rest), ký hiệu là E0.
Áp lực ngang của đất có khuynh hướng đẩy trượt vật chắn và khi vật chắn trượt
ra khỏi hay lấn vào khối đất, khối đất đạt trạng thái cân bằng dẻo giới hạn và áp lực
ngang tương ứng của đất đạt cực trị được gọi là áp lực ngang của đất ở trạng thái cân
bằng phá hoại dẻo. Có hai loại áp lực ngang cực trị:
- Khi đạt cực tiểu có tên là áp lực ngang của đất ở trạng thái cân bằng phá hoại
dẻo chủ động (active earth pressure), ký hiệu là Ea .
- Khi đạt cực đại có tên là áp lực ngang ở trạng thái cân bằng phá hoại dẻo bị
động (passive earth pressure), ký hiệu là Ep .
Xét 1 tường chắn ỡ trạng thái ổn định, ta có:
- Áp lực tĩnh E0: Khi tường hoàn toàn không có chuyển vị, khối đất sau lưng
tường ở trạng thái cân bằng tĩnh.
- Áp lực chủ động Ea: tường chuyển vị về phía trước hoặc quay quanh một góc
rất nhỏ quanh mép trước của chân tường (tường chuyển vị cùng chiều với chiều
của áp lực đất).
- Áp lực bị động Ep: Tường chuyển vị ngang hoặc ngã về phía sau (chuyển vị
tường ngược chiều với áp lực đất), khối đất sau lưng tường bị ép lại và bị trượt theo
một mặt phẳng trong đất và dọc theo lưng tường.
E

Ep
E0
Δ

Δa

Chuyển vị ra khỏi khối đất

Ea

Δp

Δ

Chuyển vị về phía khối đất

Hình 5.1 Quan hệ của chuyển vị và áp lực đất
5.2.1 Áp lực tĩnh E0
Khi tường hoàn toàn không có chuyển vị, khối đất sau lưng tường ở trạng thái
cân bằng tĩnh.
Ứng suất thẳng đứng do trọng lượng bản thân gây ra tại điểm M có độ sâu z:
σz = γ z
Ứng suất theo phương ngang do trọng lượng bản thân:
σx = k0 γ z
GV: ThS.NCS.LÊ HOÀNG VIỆT

146

TÀI LIỆU ÔN THI CAO HỌC

Với k0 = ξ =

ν
1 −ν

MÔN: CƠ HỌC ĐẤT

: là hệ số áp lực hông

Khi đất ở trạng thái tĩnh, do tính chất đối xứng, các ứng suất đứng và ngang
tương ứng với 2 ứng suất chính:
σ1 = σz = γ z
σ3 = σx = k0 γ z
Áp lực tĩnh E0
E0 = Ex =

1
k0 γ H2
2

k0 có thể được xác định theo một số công thức thực nghiệm của các tác giả:
• Theo Jaky (1944): k0 = 1 - sinϕ
• Theo Brooker (1965): k0 = 0,95 - sinϕ


Theo Alpan:

k0 = 0,19 + 0,233logIp

5.2.2 Áp lực chủ động Ea
Định nghĩa: Là loại áp lực đất làm cho tường dịch chuyển về phía trước hay làm
cho tường xoay, tức là làm cho khối đất phía sau lưng tường giản ra.

Ea

Ep

Mặt
trượt

Hình 5.2 Tương quan giữa áp lực đất chủ động, bị động và tường chắn chắn khi
tường có xu hướng dịch chuyển về phía trước
Áp lực ngang của đất tăng tuyến tính theo chiều sâu và có thể tính theo công thức
tích phân, nhưng để thuận tiện và tránh nhầm lẫn, nó thường được tính theo diện tích
biểu đồ như áp lực ngang ở trạng thái tĩnh.
5.2.3 Áp lực bị động Ep
Định nghĩa: Là loại áp lực đất làm khối đất sau lưng tường bị nén lại hoặc ngược
hướng với chuyển động của tường.
Áp lực ngang của đất cũng tăng tuyến tính theo chiều sâu, được tính theo diện
tích biểu đồ áp lực tĩnh.
GV: ThS.NCS.LÊ HOÀNG VIỆT

147

TÀI LIỆU ÔN THI CAO HỌC

MÔN: CƠ HỌC ĐẤT

Tàu va
Ep

Ea

Mặt
trượt

Hình 5.3 Tương quan giữa áp lực đất chủ động, bị động và tường chắn khi tường
chịu 1 ngoại lực tác dụng
Ta luoân coù : Ep>Eo>Ea.
5.3 Tính toán áp lực đất theo phương pháp dùng mặt trượt giả định của
Coulomb
5.3.1 Tính toán áp lực đất tĩnh E0
Xeùt moät ñieåm M naèm ôû ñoä saâu z, sau lưng 1 tường chắn có chiều cao H

Hình 5.4 Biểu đồ cường độ áp lực đất tĩnh E0
Ứng suất thẳng đứng do trọng lượng bản thân gây ra tại điểm M:
σz = γ z
Ứng suất theo phương ngang do trọng lượng bản thân:
σ x = K0 γ z
GV: ThS.NCS.LÊ HOÀNG VIỆT

148

TÀI LIỆU ÔN THI CAO HỌC

MÔN: CƠ HỌC ĐẤT

Cường độ áp lực đất tĩnh p0:

po = Ko γ z
⎧⎪ z = 0 ⇒ p0 = 0
⎪⎩ z = H ⇒ p0 = K 0 .γ .H

Æ Vẽ biểu đồ áp lực đất tĩnh : po ⎨

tĩnh:

‰ Áp lực tĩnh Eo có độ lớn bằng diện tích biểu đồ cường độ áp lực đất

E0 =

1
K 0 .γ .H 2
2

‰ Điểm đặt: tại trọng tâm của biểu đồ cường độ áp lực đất tĩnh
‰ Phương: Hợp với tia pháp tuyến của lưng tường 1 góc δ bằng góc ma
sát giữa đất và tường, còn gọi là góc ma sát ngoài, có thể lấy theo bảng tra
β
η
0
< 90 - ϕ
900 - ϕ ÷ 900 - ϕ/2
900 - ϕ/2 ÷ 900 + ϕ/2
900 + ϕ/2 ÷ 900 + ϕ
> 900 + ϕ

-ϕ÷0

0

0÷ϕ

0
0
ϕ/4
ϕ/3
ϕ/2

0
ϕ/4
ϕ/2
2ϕ/3
3ϕ/4

0
ϕ/2
ϕ/3
3ϕ/4
ϕ

η = 900 + α ; α : góc nghiêng của lưng tường.
Gần đúng, la lấy

2
3

δ= ϕ

Æ Nếu δ = 0 (lưng tường trơn láng) Æ Eo nằm ngang
Ta coù mối quan hệ:

tích phaân
⎯⎯⎯⎯
→ Eo
P0 ←⎯
⎯⎯

ñaïo haøm

5.3.2 Tính toán áp lực đất chủ động và bị động theo lý thuyết của Coulomb
Từ năm 1773, Coulomb đã đề ra phương pháp xác định áp lực chủ động và bị
động lên lưng tường ở trạng thái cân bằng giới hạn dẻo.
Các giả thiết:
• Lăng thể trượt ABC ở trạng thái căn bằng giới hạn dẻo còn nguyên một khối.
• Mặt trượt của các khối đất ở trạng thái cân bằng giới hạn là một mặt phẳng.
• Mặt trượt thứ hai chính là lưng tường.
• Khi có lực dính thì lực dính sẽ phân bố đều trên mặt trượt
GV: ThS.NCS.LÊ HOÀNG VIỆT

149

TÀI LIỆU ÔN THI CAO HỌC

MÔN: CƠ HỌC ĐẤT

Æ Bài toán về tường chắn được xem như bài toán phẳng, khi tính toán được tách
ra từng đoạn dài 1m để tính toán.
5.3.2.1 Áp lực đất chủ động
A. Đối với đất rời
Xem tường tuyệt đối cứng, đất sau lưng tường là đất rời, đồng nhất.
Tường bị trượt theo mặt phẳng BC và AB, lăng thể ABC ở trạng thái cân bằng
giới hạn.

Hình 5.5 Tính toán áp lực chủ động theo Coulomb
‰ Trọng lượng khối đất ABC: W
‰ E laø phaûn löïc cuûa töôøng vôùi laêng theå tröôït coù phöông hôïp vôùi tia phaùp
tuyeán 1 goùc baèng δ
‰ R laø phaûn löïc cuûa ñaát vôùi laêng theå tröôït coù phöông hôïp vôùi tia phaùp
tuyeán 1 goùc baèng
Khi khối ABC ở trạng thái cân bằng giới hạn (dựa vào hệ thức lượng trong tam
giác: a/sina = b/sinb = c/sinc), ta có:
E
W
=
0
sin(θ − ϕ ) sin[180 − (ψ + θ − ϕ )]
⇒E=

W sin(θ − φ )
sin(ψ + θ − φ )]

Với ϕ : góc ma sát trong của đất
ψ = 900 - α - δ
δ : góc ma sát ngoài của đất
α : góc nghiêng của lưng tường
β : góc nghiêng mái đất
GV: ThS.NCS.LÊ HOÀNG VIỆT

150

TÀI LIỆU ÔN THI CAO HỌC

MÔN: CƠ HỌC ĐẤT

θ : góc tạo bởi phương mặt trượt BC và phương ngang
• Khi: ε → ε ' ⇒ W = 0 ⇒ E = 0
• Khi: ε → ϕ ⇒ sin ( ε − ϕ ) ⇒ E = 0
Vaäy trong khoaûng bieán thieân cuûa ε töø ϕ − ε seõ coù 1 goùc cuûa ε maø E → Emaxvaø
Emax laø aùp löïc chuû ñoäng cuûa ñaát (Ea).
‰ Độ lớn của áp lực đất chủ động:

Ea =
Với Ka là hệ số áp lực chủ động

Ka =

1
K a .γ .H 2
2
cos 2 (ϕ − α )


sin (ϕ + δ ) sin (ϕ − β ) ⎤
cos 2 α (α + δ ) ⎢1 +

cos (δ + α ) cos ( β − α ) ⎥⎦
⎢⎣

2

‰ Điểm đặt: cách chân tường 1 khoảng

1
y1 = H
3
‰ Phương: hợp với tia pháp tuyến một góc bằn ggóc ma sát giữa đất và
tường δ
‰ Cường độ áp lực đất chủ động tại chân tường, với chiều cao tam giác là
H* = H cosδ/cosα

pa = K a

cos α

δ

γH

- β : góc nghiêng của mặt đất đắp sau lưng từơng; lấy dấu (+) khi mặt đất đắp nằm cao
hơn mặt nằm ngang đi qua đỉnh tường và lấy dấu (–) khi ngược lại.
™ Các trường hợp đặc biệt
_Nếu δ = β = 0, α ≠ 0 (tường trơn láng, đất đắp sau lưng tường nằm ngang, tường
nghiêng)

Ka =

cos 2 (ϕ − α )
cos α ( cos α + sin ϕ )

2

_Nếu: δ = B = α = 0 ( tường trơn láng, đất đắp sau tường nằm ngang, tường thẳng
đứng)

ϕ⎞

K a = tg 2 ⎜ 45o − ⎟
2⎠


GV: ThS.NCS.LÊ HOÀNG VIỆT

151

TÀI LIỆU ÔN THI CAO HỌC

MÔN: CƠ HỌC ĐẤT

B. Đối với đất dính:
Khi khoái ñaát ôû traïng thaùi caân baèng giôí haïn thì E,W,R ñoàng qui
Xeùt söï caân baèng cuûa laêng theå W,R,E ta suy ra:
E = A.

sin(θ + α ).cos (θ + ϕ )
B

cos (θ + β ) .sin (θ + θ 2 ) cos (θ + β ) .sin (θ + θ 2 )

Vôùi:

A=

γ H 2 cos (α -β )
CH .cos ϕ .cos (α -β )
;B =
2
cos α
cosα
2

θ2 = α + ϕ + δ

Khi θ thay ñoåi, seõ coù moät giaù trò θ laøm cho Eo → Emax ta ñöôïc aùp löïc chuû
ñoäng Ea.
‰ Tröôøng hôïp β = δ = 0; α ≠ 0
⇒ E = A.

Vôùi A =

sin (θ + α ) .cos (θ + α )
B

cos θ .sin (θ + α + ϕ ) cos θ .sin (θ + α + β )

γH

2

2 cos α

; B = CH .cos ϕ

Khi θ thay ñoåi seõ coù giaù trò cuûa θ laøm Eo → Emax vaø ñoù laø Ea ñöôïc xaùc ñònh
nhö sau:

1
C2
2
Ea = K a .γ .H − C.c.H + D.
γ
2
Vôùi C =

cos ϕ

ϕ +α ⎞

cos 2 ⎜ 45o −

2 ⎠


, D=

C2
2Ka

Coøn cöôøng ñoä aùp löïc chuû ñoäng (duøng ñeå veõ bieåu ñoà cöôøng ñoä aùp löïc ñeå tìm
troïng taâm cuûa phaàn bieåu ñoà cöôøng ñoä aùp löïc ñaát bò neùn):


⎪z = 0

Pa = K a .γ .H − C.c ⎨ z = H

c
⎪khi Pa = 0 ⇒ H c =
K a .γ

‰ Tröôøng hôïp β = σ = α = 0
Độ lớn của áp lực đất chủ động:
Ea =

γH2

ϕ ⎞ 2C
ϕ ⎞ 2c


tg 2 ⎜ 45o − ⎟ +
− 2cH .tg ⎜ 45o − ⎟ +
2
2⎠ γ
2⎠ γ



GV: ThS.NCS.LÊ HOÀNG VIỆT

2

2

152

TÀI LIỆU ÔN THI CAO HỌC

MÔN: CƠ HỌC ĐẤT

Với giá trị hệ số áp lực đất chủ động:

ϕ⎞

K a = tg 2 ⎜ 45o − ⎟
2⎠

ϕ⎞
ϕ⎞


Cöôøng ñoä aùp löïc chuû ñoäng : Pa = γ .H .tg 2 ⎜ 45o − ⎟ − 2.c.tg ⎜ 45o − ⎟
2
2








AÙP LÖÏC ÑAÁT TAÙC DUÏNG VAØO TÖÔØNG TRONG CAÙC TRÖÔØNG HÔÏP
ÑAËC BIEÄT KHAÙC
™

Tröôøng hôïp ñaát ñaép sau töôøng coù taûi troïng taùc duïng phaân boá ñeàu.
A. Đối với đất rời
_ Taûi troïng taùc duïng sau töôøng laø taûi troïng phaân boá ñeàu lieân tuïc
_ Aùp löïc taùc duïng vaøo töôøng goàm aùp löïc ñaát vaø aùp löïc do taûi troïng ngoaøi q
Lyù luaän töông töï, ta coù aùp löïc chuû ñoäng taùc duïng vaøo löng töôøng chaén laø:


1
2q
Ea = γ H 2 K a ⎢1 +

2
⎣ γ H (1 + tgα .tg β ) ⎦

Cöôøng ñoä aùp löïc chuû ñoäng laø:
Pa = γ .z.K a +

- Cho z=0 ⇒ Pa' =

q
Ka
1 + tgα .tg β

q.K a
1 + tgα .tg β


- Cho z=H ⇒ Pa'' = K a ⎜ γ H +



1

1 + tgα .tg β ⎠
1
3

Ñieåm ñaët cuûa Ea caùch chaân töôøng 1 ñoaïn laø: y = H .

Pa" + 2 Pa'
Pa" + Pa'

‰ Trường hợp β = δ = 0, α ≠ 0 ⇒ Ea töông töï caùc tröôøng hôïp treân
‰ Trường hợp β = δ = α = 0
1
ϕ⎞
ϕ⎞


Ea = γ H 2tg 2 ⎜ 45o − ⎟ + qH .tg 2 ⎜ 45o − ⎟
2
2⎠
2⎠


1
ϕ⎞
ϕ⎞


Pa = .γ .H .tg 2 ⎜ 45o − ⎟ + q.tg 2 ⎜ 45o − ⎟
2
2⎠
2⎠



B. Đối với đất dính
‰ Tröôøng hôïp α = β = δ = 0
ϕ⎞
ϕ⎞
ϕ⎞



Ea = γ H 2 .tg 2 ⎜ 45o − ⎟ + qH .tg 2 ⎜ 45o − ⎟ − 2 Hctg ⎜ 45o − ⎟
2⎠
2⎠
2⎠




GV: ThS.NCS.LÊ HOÀNG VIỆT

153

TÀI LIỆU ÔN THI CAO HỌC

MÔN: CƠ HỌC ĐẤT

ϕ⎞
ϕ⎞
ϕ⎞



Pa = γ H .tg 2 ⎜ 45o − ⎟ + q.tg 2 ⎜ 45o − ⎟ − 2ctg ⎜ 45o − ⎟
2⎠
2⎠
2⎠



ϕ
ϕ
Cho z = 0 ⇒ Pa' = q.tg 2 (450 − ) − 2ctg 2 (450 − ) (daïng bieåu ñoà phuï thuoäc
2 1442443
2
144244
3
(1)

(2)

vaøo ñoä lôùn cuûa (1) vaø (2) )
ϕ⎞
ϕ⎞
ϕ⎞



Cho z = H ⇒ Pa" = γ H .tg 2 ⎜ 45o − ⎟ + q.tg 2 ⎜ 45o − ⎟ − 2ctg ⎜ 45o − ⎟
2
2
2












a

q
γ

H

Ea
δ

H 2a + b
3 a +b
b
Biểu đồ áp lực đất
chủ động pa

Hình 5.6 Biểu đồ cường độ áp lực đất chủ động và vị trí đặt lực Ea trong trường hợp
tường chắn chịu tải trong phân bố đều sau lưng tường
‰ Tröôøng hôïp B = δ = 0, α ≠ 0

Pa = γ HK a + q.K a − Cc
Vôùi C =

cos ϕ

ϕ +α ⎞

cos 2 ⎜ 45o −

2 ⎠


™ Trường hợp đất sau lưng tường có mực nước ngầm
Nguyên tắc chung
ƒ Tính và vẽ cường độ áp lực đất Pa có xét đến ứng suất hữu hiệu .
ƒ Tính và vẽ cường độ áp lực tĩnh của nước Pw
ƒ Tính Ea bằng tổng của áp lực đất và áp lực của nước Ew .
GV: ThS.NCS.LÊ HOÀNG VIỆT

154

TÀI LIỆU ÔN THI CAO HỌC

MÔN: CƠ HỌC ĐẤT

ƒ Tính điểm đặt lực

A
H

B

MNN

γ

a

Ea
δ

C

Za
b
Biểu đồ áp lực nước Biểu đồ áp lực đất
chủ động pa

Hình 5.7 Biểu đồ cường độ áp lực đất chủ động và vị trí đặt lực Ea trong trường hợp
xuất hiện mực nước ngầm
_Chia tường làm 2 đoạn : AB và BC có chiều dài lần lượt là h1 và h2.
Đoạn AB trên MNN
‰ Độ lớn của áp lực đất chủ động: Ea1 =

1
K a .γ 1.h12
2
1
3

‰ Điểm đặt: cách chân tường 1 khoảng: y1 = h2 + h1 (trọng tâm hình tam
giác)
‰ Cường độ áp lực đất chủ động tại điểm B: Pa1 = K a .γ 1.h1
Đoạn BC nằm dưới MNN:
Đất có dung trọng đẩy nổi γ 2' = γ sat − γ w = γ 2 − γ w
Thay cột đất từ B → A thành tải trọng phân bố đều q = γ 1h1
‰ Cường độ áp lực đất chủ động:
ϕ ⎞
ϕ ⎞


Pa 2 = tg 2 ⎜ 45o − 2 ⎟ γ 2 ' .z + tg 2 ⎜ 45o − 1 ⎟ .q
2 ⎠
2⎠





ϕ1 ⎞




ϕ2 ⎞

Cho z = 0 ⇒ Pa' 2 = tg 2 ⎜ 45o +

Cho z = H ⇒ Pa"2 = tg 2 ⎜ 45o −

⎟ .q = Pa1 = a
2⎠

ϕ1 ⎞
'
2⎛
o
⎟ γ h2 + tg ⎜ 45 − ⎟ q = b
2 ⎠
2⎠


ÆĐộ lớn của áp lực đất chủ động:

GV: ThS.NCS.LÊ HOÀNG VIỆT

155

TÀI LIỆU ÔN THI CAO HỌC

MÔN: CƠ HỌC ĐẤT

Pa' 2 + Pa"2
Ea 2 =
xh2 (diện tích biểu đồ cường độ áp lực đất chủ động)
2
‰ Điểm đặt cách chân tường y2
1 2 P ' + P"
y2 = h2 'a 2 "a 2
3
Pa 2 + Pa 2

Ngoài ra đoạn BC nằm trong MNN nên còn chịu áp lực thủy tĩnh của nước.
Cường độ áp lực nước tại chân tường là: Pw = γ w .h2
1
2

Áp lực ngang của nước tác dụng vào tường là: En = γ w h22
1
3

Điểm đặt của Ew cách chân tường một đoạn y3 = h2
TỔNG HỢP
‰ Độ lớn của áp lực đất chủ động: Ea = Ea1 + Ea2 + Ew
‰ Điểm đặt cách chân tường 1 khoảng: y =

y1.Ea1 + y2 .Ea2 + y3 .Ea3
Ea

™ Trường hợp đất sau lưng tường gồm nhhiều lớp đất
Tính hệ số áp lực Ka cho từng lớp đất riêng biệt.
Tính và vẽ biểu đồ cường độ áp lực đất Pa cho từng lớp đất riếng biệt, Thay cột
đất phía trên thành tải trọng phân bố đều tác dụng lên lớp đất phía dưới.
Tính Ea bằng tổng các giá trị Ea của từng lớp đất.
‰ Độ lớn của áp lực đất chủ động: Ea =

n

∑E

ai

1

n

‰ Điểm đặt cách chân tường 1 khoảng: y =

∑ y .E

ai

i

1

n

∑E

ai

1

5.3.2.2 Áp lực đất bị động
Nếu dưới tác dụng của lực ngoài, tường chuyển vị về phía đất và gây ra trạng thái
cân bằng giới hạn bị động, khi đó đất sau tường có khả năng bị trượt lên mặt BC và
BA . Ở trạng thái cân bằng, lăng thể ABC chịu tác dụng của các lực:
Trọng lượng bản thân W của lăng thể ABC;
Phản lực R của phần đất còn lại đối với lăng thể ABC;
Phản lực E (bị động Ep) của lưng tường đối với lăng thể.
Lăng thể ABC ở trạng thái cân bằng giới hạn và có xu hướng trượt lên trên, nên
GV: ThS.NCS.LÊ HOÀNG VIỆT

156

TÀI LIỆU ÔN THI CAO HỌC

MÔN: CƠ HỌC ĐẤT

phương và chiều của các lực tác dụng có thể biểu diễn như hình vẽ. Hệ lực tác dụng
lên lăng thể cân bằng nên tam giác lực kép kín. Từ hệ thức lượng trong tam giác lực có
thể rút ra biểu thức của E.
sin(θ + ϕ )
sin(θ + ϕ + ψ ')

E =W

ψ’ = 900 - α + δ
Biểu thức trên cho thấy E là một hàm số của θ và trị số của E thay đổi khi θ thay
đổi, tức ứng với những mặt trượt khác nhau. Trị số áp lực đất bị động Ep là trị số nhỏ
nhất của E và mặt trượt ứng với Ep là mặt trượt nguy hiểm nhất.
C
A

β
α

θ+ϕ
W

W
ψ’=900-α+δ

H

E

R
E

R

δ ψ’

ϕ
θ
B

Hình 5.8 Tính toán áp lực bị động
Để xác định Ep có thể dùng phương pháp giải tích hay đồ giải tương tự như
trường hợp áp lực đất chủ động, ta có kết quả.
A. Đối với đất rời
‰ Trường hợp δ = β = 0, α ≠ 0

Ep =

1
Kp γ H2
2

Kp : hệ số áp lực đất bị động
Kp =

cos 2 (ϕ + α )

sin(ϕ ) sin(ϕ ) ⎤
cos α cos(α ) ⎢1 −

cos(α ) cos(α ) ⎦


2

2

=

cos 2 (ϕ + α )
⎡ cos(α ) − sin(ϕ ) ⎤
cos α cos(α ) ⎢

cos(α )



2

2

GV: ThS.NCS.LÊ HOÀNG VIỆT

157

TÀI LIỆU ÔN THI CAO HỌC

MÔN: CƠ HỌC ĐẤT

cos 2 (ϕ + α )
cos(α ) (cos α − sin ϕ ) 2

=

‰ Trường hợp δ = β = α = 0

K p = tan 2 (450 +

ϕ
2

)

Góc giữa mặt trượt và phương tác dụng của trọng lượng W của khối đất trượt
θ = (450 + ϕ/2)
B. Đối với đất dính
‰ Trường hợp δ = β = 0, α ≠ 0

Ep =
C=

cos ϕ

α −ϕ ⎞

cos 2 ⎜ 450 −

2 ⎠


Kp =

;D =

1
c2
Kp γ H2 + CcH + D
2
2
c2
2Kp

cos 2 (φ + α )
cos(α ) (cos α − sin φ ) 2

‰ Trường hợp δ = β = α = 0

ϕ

ϕ

p p = tan 2 ( 45 0 + ) γ z + 2 c tan( 45 0 + )
2
2
Hay p p = K p γ z + 2 c K p
Ep =

1
2c 2
ϕ
ϕ
tan 2 (45 0 + ) γ H 2 + 2 c H tan(45 0 + ) +
2
2
2
γ

1
2c 2
2
Ep = K p γ H + 2c H K p +
2
γ
ϕ

K p = tan 2 (450 + )
2

Để tính áp lực bị động Ep ta dùng các công thức của áp lực chủ động nhưng
phải đổi dấu của δ và ϕ
1
ϕ⎞

Ví dụ: Ea = γ H 2tg 2 ⎜ 45o − ⎟
2
2




1
ϕ⎞

⇒ E p = γ H 2tg 2 ⎜ 45o + ⎟
2
2⎠


Lưu ý: Giá trị áp lực đất bị động Ep thường lớn hơn rất nhiều so với áp lực đất
chủ động Ea bởi vì giả thiết về mặt trượt không phù hợp với thực tết và áp lực đất bị
động rất khó đạt đến trạng thái đỉnh. Do đó, áp lực bị động Ep hay hệ số áp lực đất bị
GV: ThS.NCS.LÊ HOÀNG VIỆT

158

TÀI LIỆU ÔN THI CAO HỌC

MÔN: CƠ HỌC ĐẤT

động Ka phải chia cho hệ số an toàn k = 2 ÷ 3.
5.4 Tính toán áp lực đất chủ động theo phương pháp đồ giải của Culmann
Culmann đã kiến nghị phương pháp cụ thể, trong đó các tam giác lực được vẽ
ngay trên hình vẽ của tường và khối đất. Áp lực của đất lên tường xác định theo các
bước:
- Từ B ở mép sau chân tường, kẽ đường thẳng BS làm với đường nằm ngang một
góc ϕ. Qua B kẻ đường BK hợp với BS một góc ψ (ψ = 900-α-δ).
- Kẻ một mặt trượt BC1 bất kỳ, tính trọng lượng W1 của lăng thể trượt ABC1, rồi
theo một tỷ lệ nhất định, lấy ra trên đoạn BS một đoạn Bn1, biểu diễn trọng lượng W1.
- Qua điểm n1, kẻ đường thẳng song song với BK và cắt BC1 tại m1.
- Tam giác m1n1B chính là tam giác lực của các lực tác dụng lên lăng thể ABC1 ,
trong đó m1n1 biểu thị trị số áp lực đất chủ động E1 tác dụng lên tường ứng với mặt
trượt BC1.
- Tiếp theo kẻ một số mặt trượt BC2, BC3, … khác và lặp lại các bước trên ta tìm
được các đoạn m2n2, m3n3, ….
- Nối các điểm m1, m2, m3, … ta được một đường cong ta gọi là đường Culmann.
- Kẻ đường song song với BS và tiếp xúc với đường cong tại m.
- Qua m kẻ đường song song với BK cắt đường BS tại n, ta có đoạn mn biểu thị
trị số của áp lực lớn nhất, tức áp lực chủ động Ea, còn đoạn BmC biểu thị phương của
mặt trượt thực tế.
Phương pháp này chỉ mới cho phép tìm được trị số của tổng áp lực đất và vị trí
mặt trượt nguy hiểm nhất, chứ chưa xác định được biểu đồ phân bố áp lực đất cũng
như điểm đặt của tổng áp lực đất tác dụng lên tường.
Sau khi tìm được vị trí mặt trượt như trên, ta kẻ một đường song song với mặt
trượt đó và đi qua trọng tâm của lăng thể trượt. Đường này gặp lưng tường tại điểm O1
và đó là điểm đặt của áp lực đất tác dụng lên tường.

a

δ

a

a

K

δ+ϕ
ψ

ϕ

Hình 5.9 Phương pháp đồ giải của Culmann
GV: ThS.NCS.LÊ HOÀNG VIỆT

159

TÀI LIỆU ÔN THI CAO HỌC

MÔN: CƠ HỌC ĐẤT

5.5 Tính toán áp lực đất theo lí thuyết cân bằng giới hạn
5.5.1 Phương pháp của Rankine
Giả thiết:
- Giữa đất và tường không có ma sát (δ = 0)
- Sự hiện diện của tường không ảng hưởng đến sức chống cắt của đất
- Ở tại độ sâu z bất kì, áp lực phân bố song song với mặt đất
A. Đối với Đất rời
cos β − cos 2 β − cos 2 ϕ

- Áp lực chủ động: pa = γ z cos β

cos β + cos 2 β − cos 2 ϕ

β : góc nghiêng của đất sau lưng tường
- Áp lực bị động: p p = γ z cos β

cos β + cos 2 β − cos 2 ϕ
cos β − cos 2 β − cos 2 ϕ

‰ Trường hợp đất sau lưng tường nằm ngang (β= 0)
ϕ⎞

- Áp lực chủ động: pa = γ z tan 2 ⎜ 450 − ⎟
2⎠



ϕ⎞

K a = tan 2 ⎜ 450 − ⎟ : hệ số áp lực chủ động
2⎠

1
ϕ⎞

E a = γ H 2 tan 2 ⎜ 450 − ⎟
2
2⎠


Vị trí áp lực chủ động Ea tại H/3 kể từ đáy tường
ϕ⎞

- Áp lực bị động: p p = γ z tan 2 ⎜ 450 + ⎟


2⎠

ϕ⎞

K p = tan 2 ⎜ 450 + ⎟
2⎠

1
ϕ⎞

E p = γ H 2 tan 2 ⎜ 450 + ⎟
2⎠
2


Vị trí áp lực bị động Ep tại H/3 kể từ đáy tường
B. Đối với đất dính
‰ Trường hợp δ = β = α = 0
ϕ⎞
ϕ⎞


- Áp lực chủ động: pa = γ z tan 2 ⎜ 450 − ⎟ − 2 c tan⎜ 450 − ⎟


Hc =

2⎠



2⎠

2c



γ tan⎜ 450 −

GV: ThS.NCS.LÊ HOÀNG VIỆT

ϕ⎞

2⎠

160

TÀI LIỆU ÔN THI CAO HỌC

MÔN: CƠ HỌC ĐẤT

ϕ⎞
ϕ⎞


- Áp lực bị động: p p = γ z tan 2 ⎜ 450 + ⎟ + 2 c tan⎜ 450 + ⎟
2⎠



2⎠



5.5.2 Phương pháp số của Sokolovski
A. Đối với Đất rời
Ea =

1 *
Ka γ H 2
2

Ep =

1 *
Kp γ H2
2

K*a , K*p : hệ số áp lực chủ động và bị động theo lí thuyết cân bằng giới hạn, tra
bảng.
B. Đối với đất dính
Tải trọng tác dụng phân bố đều khắp q, δ = β = α = 0
ϕ⎞
ϕ⎞


pa = (γ z + q ) tan 2 ⎜ 450 − ⎟ − 2 c tan ⎜ 450 − ⎟
2⎠
2⎠


ϕ⎞
ϕ⎞


Pp = (γ z + q ) tan 2 ⎜ 450 + ⎟ + 2 c tan ⎜ 450 + ⎟
2⎠
2⎠



Hệ số K*a theo Sokolovski

ϕ0

10

20

30

40

δ0
α0

-30

-20

-10

0

10

20

30

40

0

0,49

0,58

0,65

0,70

0,72

0,73

0,72

0,67

5

0,45

0,54

0,61

0,66

0,69

0,70

0,69

0,64

10

0,43

0,51

0,58

0,64

0,67

0,69

0,68

0,63

0

0,27

0,35

0,42

0,49

0,54

0,57

0,60

0,59

10

0,23

0,31

0,38

0,44

0,50

0,53

0,56

0,55

20

0,22

0,28

0,35

0,41

0,47

0,51

0,53

0,54

0

0,13

0,20

0,27

0,33

0,40

0,46

0,50

0,52

15

0,11

0,17

,023

0,29

0,36

0,42

0,46

0,48

30

0,10

0,15

0,21

0,27

0,33

0,39

0,43

0,46

0

0,06

0,11

0,16

0,22

0,29

0,35

0,42

0,46

20

0,05

0,09

0,13

0,19

0,25

,032

0,38

0,42

40

0,04

0,07

0,12

0,17

0,23

0,29

0,36

0,41

GV: ThS.NCS.LÊ HOÀNG VIỆT

161

TÀI LIỆU ÔN THI CAO HỌC

MÔN: CƠ HỌC ĐẤT

Hệ số K*p theo Sokolovski
ϕ0
10

20

30

40

δ0

α0

-30

-20

-10

0

10

20

30

40

50

60

0

1,53

1,53

1,49

1,42

1,34

1,18

1,04

0,89

0,71

0,53

5

1,71

1,69

1,64

1,55

1,43

1,26

1,10

0,93

0,74

0,55

10

1,88

1,79

1,74

1,63

1,50

1,33

1,15

0,96

0,76

0,55

0

2,76

2,53

2,30

2,04

1,77

1,51

1,26

1,01

0,77

0,56

10

3,26

3,11

2,89

2,51

2,16

1,80

1,46

1,16

0,87

0,61

20

4,24

3,79

3,32

2,86

2,42

2,00

1,63

1,25

0,92

0,63

0

5,28

4,42

3,65

3,00

2,39

1,90

1,49

1,15

0,85

0,60

15

8,76

7,13

5,63

4,46

3,50

2,70

2,01

1,45

1,03

0,69

30

11,72

9,31

7,30

5,67

4,35

3,29

2,42

1,73

1,23

0,75

0

11,27

8,34

6,16

4,60

3,37

2,50

1,86

1,35

0,95

0,64

20

26,70

18,32

13,02

9,11

6,36

4,41

2,98

1,99

1,33

0,81

40

43,23

29,40

20,35

13,96

9,43

6,30

4,16

2,67

1,65

0,96

5.6 Tính toán ổn định cho tường chắn
Đối với những tường chắn đất có nền không phải là đá thì cần tính toán ổn định
tường chắn theo các sơ đồ sau:
• Ổn định cục bộ (ép trồi) của đất dưới bản móng tường chắn
• Trượt phẳng
• Trượt hỗn hợp
• Trượt sâu
Đối với những tường chắn đất có nền là đá thì cần tính toán ổn định tường chắn
theo sơ đồ trượt phẳng.
5.6.1 Kiểm tra ổn định trượt phẳng của tường chắn
ktp =

∑E
∑E

p−s

≥ 1, 0 ÷ 1, 4

a

∑Ep-s : tổng lực ngang tác động theo phương bị động (không cho tường trượt),
bao gồm lực ma sát giữa đáy tường với đất và áp lực đất bị động.
Lực ma sát giữa đáy tường với đất :

Es = [σ .tgϕ + c ] b
Với σ là tổng lực đứng tác dụng xuống bản đáy của tường, trừ đi phần áp lực
nước đẩy nổi (nếu có).
Es = [(∑ptt – U) tgϕ + c] b
ptt = Ntt / F
GV: ThS.NCS.LÊ HOÀNG VIỆT

162

TÀI LIỆU ÔN THI CAO HỌC

MÔN: CƠ HỌC ĐẤT

U: áp lực đẩy nổi của nước tác dụng lên móng tường chắn ứng với chiều rộng
mặt trượt tính toán (b)
b : chiều rộng móng tường chắn (chiều rộng mặt trượt tính toán)
∑Ea : tổng lực ngang tác động theo phương chủ động (làm cho tường trượt),
chính áp lực đất chủ động.
5.6.2 Kiểm tra ổn định trượt sâu (lật)

kts =

∑M
∑M

gay lat

≥ 1, 0 ÷ 1, 4

chong lat

Lấy môment tại vị trí chân trước (O) của móng tường chắn.
Chú ý đến áp lực đẩy nổi của nước dưới bản móng tường chắn (trường hợp có mực
nước ngầm)

BÀI TẬP CHƯƠNG 4
Một tường chắn đất bằng
BTCT cao 8m, đất sau lưng tường
gồm 2 lớp đất có các đặc trưng như
hình vẽ. Tải trọng sau lưng tường
phân bố kín đều khắp có độ lớn q =
100 kN/m2.

q =100kN/m2

Tường thẳng đứng, trơn
láng, đất sau lưng tường nằm ngang.
Mực nước ngầm nằm rất sâu.
Câu 1) Xác định độ lớn và
điểm đặt (cách chân tường C) của
tổng áp lực đất chủ động (trên 1m
tường) tác dụng đoạn tường AB 3m
(159.7 kN/m và 5.76m)



A
Lớp 1:
γ = 18kN/m3
ϕ = 250
c = 12kN/m2

4m

Lớp 2:
γ = 19kN/m3
ϕ =280
c =0 kN/m2

4m

B

γ = 19kN/m3
ϕ =280
c=0

Câu 2) Xác định độ lớn và
C
điểm đặt (cách chân tường C) của
tổng áp lực đất chủ động (trên 1m tường) tác dụng đoạn tường BC (303.24 kN/m và
1.88m)
Câu 3) Xác định độ lớn và điểm đặt (cách chân tường C) của tổng áp lực đất
chủ động (trên 1m tường) tác dụng lên toàn thân tường. (462.94 kN/m và 3.22m)
Câu 4) Tính tổng áp lực ngang tác dụng lên toàn thân tường (trên 1m tường),
(bao gồm áp lực chủ động và bị động) (226.105 kN/m)
Câu 5) Trường hợp mực nước ngầm nằm ngay tại lớp 2 (cách mặt đất 4m), xác
định độ lớn và điểm đặt (cách chân tường C) của tổng áp lực đất chủ động (trên 1m
tường) tác dụng lên toàn thân tường. (514.06 kN/m và 3.03m)
Câu 6) Giả sử q=0, xác định độ sâu khi đào đất không phải chắn (4.18m)
GV: ThS.NCS.LÊ HOÀNG VIỆT

163